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ABOUT THIS BOOK

FAST APPROACH SYSTEM (FAS)
FOR LEARNING CALCULUS

Subject: Solving Ordinary Differential Equations
1. AUTHOR'S PROLOGUE

What is a prologue? One possible answer might be: a text seeking two intertwined objectives and
which seem to go down different paths. On the one hand, introducing the word, previous step,
preparation for speech. According to its etymology from the Greek mpolovyos; prologos, from mpo-
pro: “before and towards”(in favor of), and Aoyos logos: “word”. On the other hand, to argue
not just as a viable logical way for a reasonable justification, but to persuade the receiver, implicit
and model reader. The success in bringing these two parts together is what carries me to accept

the challenge of writing this book.

The sole essence of the word seems to mark the way. Pro: previous step towards the logos
(argument). The pro may be interpreted as my experience, the fruit of my academic trajectory,
of decades devoted to the teaching of Mathematics and constant and tenacious research to sustain
this way of working. In this sense, the pro may be interpreted as the primary reason, the engine
that starts the logos, speech that endorses the FAS (Fast Approach System) — my work
philosophy.

Although the attention of this book is focused on learning to solve Ordinary Differential
Equations (ODE), the philosophy sustaining it is applicable to learning any subject in

Mathematics.

The learning of Mathematics poses a difficulty to more than one student. FAS helps to overcome
these shortcomings or weaknesses, since it has been designed with an eminently practical and
vital sense, with permanent concern for helping to think and stimulating creative thinking. Thus,

Mathematics awakes passion due to its unfathomable object of study and for contributing new



nuances to all sciences and to all of man's life since birth.

Returning to the concept of prologue, I may state that pro (preparation, experience) is the result
of the research 1 have been perfecting since I was an advanced student majoring in Electrical
Engineering at the Instituto Politécnico Superior in Rosario, Santa Fe, Argentina. During
that period my book on “ Ejercicios sobre Ecuaciones Diferenciales” was published, giving way to a
transcendent effect on the way Mathematics was taught in the superior levels. I continued teaching
differential equations to students of the different engineering branches, namely civil, mechanical,
electronics and electrical at the Universidad Tecnologica Nacional, and also Mathematical
Analysis III at the Facultad de Ciencias Ezactas e Ingenieria of the Universidad Nacional de

Rosario.

As founder and president of Instituto Superior Laplace de Ciencias en Sistemas (Rosario,
Argentina) and through my professional career in universities abroad, I was able to prove that
learning this work philosophy — FAS— based upon different approaches for learning the essential
concepts yields permanent advances in students as regards Mathematics and study habits, helping
them accomplish better academic performance. I, therefore, recognize FAS as an interesting

pedagogical alternative, due to processes and results, for all the field of Mathematics.

In 2007 I attended California State University in Sacramento, California, USA, as a wvisiting
scholar, invited by the Associate Dean of the College of Natural Sciences & Mathematics, Dr.
Doraiswamy Ramachandran. Once there I exchanged classroom experiences with a group of faculty
members from the Math € Statistics Department, among them Dr. David Zeigler and Dr. Andras
Domokos, who regularly teach the courses of differential equations. Dr. David Zeigler, in his
revision of this philosophy states: “FAS is a novel approach to teaching differential equations that

places emphasis on the fundamental concepts and the interplay between various solution method”.

In 2012, FAS was first introduced in the Mathematics Department at Oregon State
University in Corvallis, Oregon, USA. That same year it was also presented and sponsored by
the Maseeh Mathematics and Statistics Colloquium Series Fund and the Fariborz Maseeh
Department of Mathematics and Statistics at Portland State University in Oregon, USA.

Today, FAS also appears in the treatment of online education.

If T expose in the concept of the prefix pro my career and experience, I now add to the root

logos the argument that sustains the FAS philosophy. The objective in teaching Calculus is the
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understanding of concepts. In this work I propose a philosophy for learning a subject of Calculus,
that is, a way of reaching the concepts from an equidistant equilibrium between a traditional
orientation and a reformist one. Due to its structure, this system may be made as traditional
and instructive (of the cookbook-recipe type) or as reformist (cutting out or taking different

approaches) as one may want, thus stimulating logic and creative thinking.

The philosophical key in FAS is based upon the access to knowledge through a set of different
approaches, each one of which has been created in the most careful way possible to achieve
independence among them. Each one seeks to attain the maximum knowledge by itself.
Graphically, we may imagine each approach as resting one next to the other, as in the tines of a
fork. The idea consists in reaching the comprehension of the concepts through a strategy that
surfs among the different approaches, consolidating the comprehension process and thus
generating a way of thinking. FAS does not pretend to change the way of thinking incorporated
in our unconscious but to connect to it so that together they may open the mind and bring out

the best in everyone.

Due to the independence of each approach, each of them may be considered a book in itself.
The new information that each approach provides is incorporated into the cognitive structure,
connecting to preexisting knowledge. Each approach is not used as an end but as a means to

cause a disintegration of the cognitive structure and its subsequent automatic restructuring.

Although the number of approaches is finite, the combinations of information processing are
infinite, in the same manner as primary colors are blended into an infinite number of shades and
hues. Summarizing, the more approaches we take, the more significant the learning, which will

vary according to the intensity and order considered.

Going back to Dr. David Zeigler, he assures that “because each approach is independent, the
differential equations curriculum is flexible. An instructor may use a deliberate combination of the
approaches to develop a curriculum that reflects the needs of the students. For example, a class
composed primarily of engineers will see greater benefit from the methodological approach, while a
class with a large percentage of mathematics majors will gain more understanding from the analytic
approach. Furthermore, the decomposition of the material into the distinct approaches allows for
a deeper investigation of the material without being distracted from the content appearing in other

approaches.”
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We name the approaches direct and indirect. The direct ones are called analytic, methodologic
and applications, these being the main generators of knowledge. The indirect ones are two:

Reference Guide and Guided Practice, which complement the system.

The reader has just started a new way of facing Science, life and the deep bond with human

evolution.

Carlos A. Corvinig

December 2018

2. OBJECTIVES AND BASIC CHARACTERISTICS (and raison d’étre) OF THE
FAST APPROACH SYSTEM

The system is addressed to:
e Professionals teaching Mathematics who need a practical and efficient pedagogical tool.

e Engineers, physicists and mathematicians who wish to refresh or expand their knowledge of

ODE.

e High School and University students who may benefit through self-acquisition of tools and
study habits, since the system provides flexibility and interaction similar to individual
personalized education, thus obtaining better academic achievement and reducing eventual

tutoring costs.
e Tutors teaching online classes due to the ductility of the system.
Among the benefits we may count the following:

e [t encourages the three basic procedures to access knowledge and how to react properly:

instinct, learning and comprehension.

e It allows students to promptly get to the subject of their interest without having to skip

parts of the chapters in a book in which the subjects are not separate.

e It helps instructors who wish to present a minimum of each approach to do so without

worrying about skipping parts of a chapter.
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e [t separates the different approaches to be able to pay special attention to each and every

one of them.
e It reduces time and costs for education by live streaming and/or on demand.
e It reaches a vast number of students since it is a bilingual system (Spanish/English).

e It collaborates with teachers due to the fact that part of the material's structure may be
replaced, generating a beneficial symbiosis in the teacher /student relationship, also providing

a complement to curricula.
3. IMPORTANT OBSERVATION

This work has been focused on learning ordinary differential equations (ODE); in a set of
pedagogical supports carefully designed to capture the readerSs interest and increase

comprehension when solving ODEs.

4. SYSTEM CONTENTS AND LAYOUT (for solving Ordinary Differential
Equations)

The structure of the work material is divided into three main parts, which demand that readers

interact with them regulating their progress at their own pace.

Part 1 Reference Guide (indirect approach)

Part II Analytic Approach (Chapter 1)
Geometric Approach (Chapter 2)
Methodologic Approach (Chapter 3)
Applications (Chapter 4)

Part III Guided Practice (indirect approach)

Part I: Reference Guide or Optimized Table
It contains the most important formulae, definitions and properties ordered in tables and arranged
in a way that allows a quick reference and view of subject by subject, from Chapter 1 to Chapter

4. In other words, this guide represents the work of building the structural part of knowledge into

a summary.

This Reference Guide will serve as an initial guide to ease learning and the comprehension of



each of the approaches, and as a final summary for the Guided Practice, exams or to solve a

proposed exercise.
Part II. Approaches

In this part we find the development of each approach to reach the maximum knowledge for solving

ordinary differential equations (ODE). It contains the four chapters of the book.

Each approach has been worked upon in the most careful way to obtain independence from one

another. Graphically, we may think of them as resting one alongside the other.

Starting with the analytic approach — or at least part of it — continuing with the approaches of

our interest and interacting with the Reference Guide we shall obtain a particular knowledge.

Obviously, the more approaches we take, the vaster our knowledge will be. The path chosen will

be known as the “route of knowledge”.

Chapter 1. Analytic Approach. It is the beginning and development of our first
knowledge. It is dedicated to the development of procedures; that is, the implicit and
explicit obtaining of formulae for solving different ordinary differential equations. In
this approach we propose unsolved exercises so that readers may develop their intuition

and discover the structure of the ODE by themselves.

Chapter 2. Geometric Approach. It deals with the geometric procedures for

representing ODE solutions.

Chapter 3. Methodologic Approach. “More systematic methods” are developed,
such as the Operational Method, a mathematical technique that has become a powerful
instrument in ODE solving. Also, the Numerical Method which is used to calculate
estimated values of unknown functions, for certain values of the independent variable.

Sometimes, for many of the difficult ODEs, these are the only practical approaches.

Chapter 4. Applications Approach. The concepts of ODE solving are presented
through application problems. We propose different problems that frequently come up
in Physics and Engineering for readers to formulate in terms of an ODE; that is, to
build a mathematical model associated to the problem and solve it.

However, given the reciprocity between the ODEs and their applications, readers may
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develop their intuition and discover by themselves the corresponding ODE structure.

And by exercising problem solving also attain operative skills.

Part III: Guided Practice

It consists of a set of exercises and partially solved problems without consideration for degrees of

difficulty.

Although this Guided Practice does not directly represent an approach in itself, it is good for
consolidating concepts and increasing knowledge. This part may be considered as an indirect
approach. However, we must point out that this part is the most important one for it boosts the

comprehension process and emphasizes a “regulated” way of thinking.
5. CONCLUSION

As time moves on there is more need for tools to acquire knowledge. FAS is one of them. This
asseveration could probably be criticized, but it is an opinion formed in the evidence of experiences

acquired throughout time.

From a pedagogical point of view, FAS represents another alternative for understanding concepts
and in no way intends to replace others. Technological tools are complementary and may be used

for teaching online, face-to-face or both simultaneously.

If to understand a concept, we start from a traditional approach or simplified vertical teaching
process, we have a definition, then practice, a geometric interpretation, a numerical calculation
and also applications or application problems, ending up with an evaluation. This path offers us
a minimum result. Whereas, if from each part of this sequence we try to generate independent
approaches to reach the understanding of a concept, chances of arriving at an optimum result

increase.

The independence of the different approaches speaks of intensity of study of each one of them.
And the interaction among them allows the student to “regulate” his progress and his studies at

his own pace. For this reason, we may speak of “regulated thinking”.

The effort is focused on “improving” rationally and mathematically regulated work towards the
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understanding of the concept. Improving is increasing the amount of approaches or independent

alternatives and the interaction among them in a horizontal movement.

When we encounter an unknown mathematical exercise or problem, it is not just about finding
an algorithm to solve the problem, since we would be facing an exercise. For FAS when face to
face with a problem whose solution is not reached immediately, its heuristic method consists of
breaking it up into known fragments and solving it using knowledge acquired with the different
approaches of the route of knowledge chosen, combining it with our own knowledge acquired
before, and then taking a path to the final solution. FAS considers the solution of a problem not
just as a situation that requires a solution, but also as a consolidation of concepts and solving

methods of each fragment. Thus, the importance of the applications or problem-solving approach.

As a final conclusion, I may state that FAS, as a work philosophy, reflects scientific meticulousness,
dedication and all the passion at the service of education, reason for which I hope this material

turns out useful for all those who delve into these pages.

Rosario, Santa Fe, Argentina

December 2018
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REFERENCE GUIDE

SOLVING DIFFERENTIAL EQUATIONS

1. Separable Variables

Pi(2)Q1(y)dz + Py()Qa(y)dy = 0

Variables x and y can be separated by the equals sign.

[P, Q)
Solutlon./PQ(@d + Q1(y)dy C

2. Homogeneous

dy y
=)
ol o y
Solution: =C where ==v
x x
Observation: If 1(v) = v the solution is y = Cz.
3. Exact

P(z,y)dx + Q(z,y)dy =0
OP(z,y) _ 9Q(z,y)

where Iy p
Solution: [ P(z,y)dz + [ (Q(x,y) - a% fP(x,y)dx) dy =C
dx indicates the integral is with respect to z, being y constant.
4. Non Exact

P(z,y)dx + Q(z,y)dy = 0

OP(x,y) , 0Q(z,y)
oy oxr

where

+

Solution: Method of the Integrating Factor.

Multiply all terms by
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K= el a5 =34 o = oI (5% )dy
and it is transformed into exact. pu is called integrating factor.

5. Reducible to Separable Variables
dy

— = f(ax 4+ by + ¢)
dx
Variables not directly separable.
Solution / du r+C where u=u(z)=ar+by+c
. —_— = W —_= =
a+b+ f(u) Y

6. Reducible to Homogeneous or Separable Variables

dy ( ay—i—bx—i—c)

a1y + bl.fL' +C
C Or ¢ nomn zero.

a) alb—bla 7& 0

d
Solution: It is reduced to a homogeneous equation o _ f

dg
where ¢ =x — 29 and n =1y — yo.

(20, yo) point of intersection of the lines ay +bxr+c=0 and a1y + bz +c¢; =0

b) alb - bla =0
Solution: It is reduced to one of separable variables v' = af S +b
AU — e+ ¢
where

v=ay+br+c

vV=ay +b
a; = \a
by = A\b

Observation: If ¢ = ¢; = 0, it is computed directly as a homogeneous.
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7. First Order Linear Equation

Y 4 Plo)y = Q)

Solution: y = e~/ P@d [ [ Q(z)e) Y@ dy 4 O]

8. The Bernoulli Equation
a) Order 1 and degree n

dy B "
p P(z)y = Q(r)y

n#1
_1
Solution: y = ¢~/ P@dz[(1 — n) [ Q(z)et= [ P@)de 4 O] 1=n
dy
b) Order 1 and degree 1. . + P(x)y = Q(x)y
x
Solution: y = Ce/ (Q@)—P(x))dz

9. Ricatti of order 1 and degree 2
dy

= P)y +QUa)y + Wi(x)

y = y1(z) particular solution, that is y,(z) = Py?(z) + Qui(z) + W

Solution: It is reduced to a first order linear equation.

u' + 2y (2) P(x) + Qz)) u+ P(r) =0

Observation: If P(z) =0, item 9 is transformed into one of type 7.

10. Second Order, Incomplete

d*y

Solution: y = [[ F(x)dz* + Ciz + C,



REFERENCE GUIDE REFERENCE GUIDE

d?y dy _
b) &5 + P(@)52 + Q(r) = 0

Solution: y = [ [e=/ @ (— [Q(z)el P@ddy + Cy)] dx + Cy

d
from making p = d_y and reducing to a linear equation of first order
x

d
£+P@m+M@:O

) T3+ P — o))

d
Solution: It is reduced to one of the Bernoulli type d_p + P(x)p = Qp"
x

d
substituting p = d_y
x

d) f(y,y",y") =0
Solution: It is reduced to one of first order through substitution
dy d*y _dp dydp  dp

— =p th — = = =
dr PN U2 T A 4o dy pdy

11. Homogeneous Linear Equation of Second Order
p and ¢ are real-valued constants.
Solution:
Let the auxiliary equation be 7% + pr + ¢ = 0 and the roots 71, ry.
Case 1: r| # 19 real
y = Cre"® + (Che™”
Case 2: 1y =ry=r real

y = Cre™ + Coxe™

Case 8: ri=a+bi rm=a—W
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y = e (C} cosbx + Cysin bx)

Observation: In all cases y receives the name of complementary function.

12. Non Homogeneous Linear Equation of Second Order

Py dy
@+P%+qy—f@)

where p and ¢ are real-valued constants.

M Y = Ycomplementary + Yparticular integral

The Yeomplementary cOrresponds to the three cases in Item 11.

The yparticular integral depends on f(l‘)

Case 1:

T rox

y = Cre* 4 Coe™" + /e”xf(x)dx + /emf(x)d:c

L —7T2 o — T

Case 2:
y = Che™ + Coxe™ + xe™ [ e f(x)dx — e [we "™ f(z)dx

Case 3:

y = e (Cy cosba + Cysinbr) + £S5 [e=0% f(1) cos brdr— 2 [ 7% f (1) sin bada

13. Homogeneous Linear Equation of Order n

n dnfl n—2 n—3

Yy Y "%y d"%y
Form: — + + + + ... +p,y=0
Jr P Jen—1 P2 dpn—1 P37 bny

dz™

where pq, po, ..., p, are real-valued constants.

Solution: Let the auxiliary equation be ™ +p;r"~! + ... +p, = 0 and the roots r,

Case 1: ri,7r9,...,1, are real-valued and different.

y = Cre"® 4+ Che™ + ... + Cpe™*

Case 2: We have simple multiple roots.

ooy Ty
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The series converges for |z| < 1 where (22) represents a particular integral.

b) The Hypergeometric Series

We define the hypergeometric series as the expression within brackets in (20). It can be written

as

B af  ala+1)8(F+1) ,

¢) Various Properties
i) (21) can be written as y = aoF (o, 3,7, x)

1 _
i) F <n +1,-n,1, Tg“") = Py(2)

d
i) - F(0,6,700) = 2 Flat 1L+ 1,7+ La)

1

iv) F(a, B, px) = m

1

v) F(Lﬁ;ﬁx)=1+:c—|—:c2—|—a:3—|—...+x": -

vi) F(1.1.2.2) = & - 7)

d) General Solution (The Frobenius Method)

(o]
The solution is given by the series y = 2 Y azz* where C is a coefficient to be determined and

k=0
C C
gives us the recurrence equation a,, = (n+C+a)n+C+p) n n>0
n+C+1)(n+C+7)
(The Frobenius Method).
We obtain for C' = 0 the expression in (21), and for C' =1 —~
1— 1-—
an+1:(n+ v+ a)(n+ v-l-ﬁ)an n>0

n+2-=9)(n+1)

36
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Then, expanding and setting the constant to ag = by , to make it different from the one before,

1y (n—7y+a). (1—7+04)(n—7+ﬁ)---(1—7+ﬁ)x
= boa’ HZ n+1—’y) A—a)B-a)2 -l n

Then yﬁ:y1+y2:aOF(Oé?Bv’YPr)—}_bOxl_PyF(a_7+17ﬁ_7+172_77x)

4) THE BESSEL DIFFERENTIAL EQUATION

a) Solution:

22y + a2y + (2* —n?)y =0 (23)

o0
By the series y = 2 3~ a,az* (C constant to be determined), the recurrence equation is
k=0

(—1)*aq

k=1,2,3,...
226kl (n+1)(n+2)...(n+ k) 23,

A2k =

And let ag =

m where I'(k+1) is the gamma function. We obtain the particular solutions
"(n
which we will call Bessel functions of the first kind and order n.

Tnlw) = 27T (n + 1) {1 T 22n+2) 2x42n 1 2)2n+4) _} -

> —1)" 1\ n+2k
- ; k:!l“(oi+1k:+1) (5)

Jonlz) = 2-"T(1 — n) {1 T2@2—2n) T 2x4(2—2n) _} B

S oG

Observation: If n is a positive integer or zero I'(n + k + 1) = (n + k)!
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o0 1)k T\ n+2k
IBACEDY ﬁ (3)

k=0
) 2 gt e
i) Jo(x)=1-— 5 + 2 wpe + ...
x a3 x® x’
i) N(@) =5~ 551+ 26~ e

n>0
1 n=>0

vi) J_p(z) = (=1)"Ju(x) n=0,1,2,3,...
vii) Ju(x) and J_,(z) are independent if n #0,1,2,3
b) Bessel functions of the second kind and order n

Let n be non integer. We define the Bessel function of the second kind and order n as the function

given by

Y, (z) = n+0,1,2,3,4

Y, = lim Yp(z) n=0,1,2

P—n

c) General solution of the Bessel differential equation.
i) y=CiJn(x) + BJ_p(z) n#0,1,2, ..
ii) y=CiJp(x) + BY,(x)  for every n

5) The Thomson Functions or Ber-bei Functions

d> d
Let the equation oY + S txy =0
dz?  dx

Its solution is given by y = Jo(i%x). Substituting in the expansion of Jy(z)
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o k 7k o k=2
Jo( @233
kz 22426282 4k)? Zl 22426282...(4k —2)°

Naming the brackets
Jo(i2z) = ber(z) + i bei(x)
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CHAPTER 1

ANALYTIC APPROACH

1 INTRODUCTION

A differential equation is that in which we find derivatives or differentials of any order of

functions that have to be determined. Differential equations are divided into ordinary, for

example:
d
3r +y _ %y (1.1)
r+8y dx
d*y d?y
— +3—= =0 1.2
dzx? - dzx? Ty (12)

in which the function to be determined depends on a single variable.

And into partial derivatives, as:
0?2 0%z

502+ a7 =0 (1.3)

in which the function z to be determined depends on two variables.

By “order” of a differential equation we mean the derivative of highest order appearing in said

equation. For example,

d
d—i+3y=x2+x (1.4)

This equation is of first order because the highest appearing order is 1. Instead,

d*y dy

- J =0 1.5
dx?  dx (1.5)

41



CHAPTER 1 ANALYTIC APPROACH

is of second order because the maximum appearing order is 2.

If the derivative of highest order is n, for example:

dny dn—ly
>1 —
(n21) dx™ + damn—1

+...+y=0 (1.6)
we say that the differential equation is of nth order.

By degree of a differential equation we mean the power to which the derivatives are raised. For
instance,

d’y  dy

dz? " dz Y (17)

is a differential equation of second order and first degree.

Instead,
@ : =3r+2 (1.8)
dr) '

is a differential equation of second degree.

If we have two or more dependent variables under a same independent variable we use systems of

“simultaneous” differential equations to obtain the value of each of the dependent variables. For

example,
d
T
(1.9)
i1
—_— ‘1'
dt

where x and y are the dependent variables and ¢ is the independent variable.

For our study, we will present differential equations in different forms, showing the derivatives as:

dy

dy
- D _
dZL’ b y Y (y)

== (1.10)
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ANALYTIC APPROACH

2 SOLVING DIFFERENTIAL EQUATIONS

Let's assume a given differential equation

Py _dy

which, in this case, represents one of second order.

¢; = constant (arbitrary) y = cre*”

is an integral solution to (2.1) since

dy

A 2 2z
dx “
d2y 2x
E = 4016

and replacing (2.2), (2.3), (2.4) in (2.1), satisfies the equation

4er1e* — 10¢1€™ + 6¢1€%® = 0

Thus, we observe that y = c;e** is a solution to (2.1).

In the same manner, we can verify that

¢y = constant (arbitrary) Y = ce

is another solution to (2.1).

If we establish

y = 1 + cpe”

we can see that it also satisfies (2.1).

(2.1)

(2.2)

(2.6)

As can be seen, by assigning arbitrary values to ¢; and ¢y we will obtain infinite solutions to the

given differential equation.

y = ci1e?® and y = cpe®

43

are called particular solutions. Instead, y = c;€?® 4 c2€3" is called general



CHAPTER 1 ANALYTIC APPROACH

solution because it is a complete solution to (2.1).

Below we will see different ways of solving differential equations and the various forms in which

they appear.

We will begin our study with variables separable.

3 EQUATIONS WITH SEPARABLE VARIABLES

When we have a differential equation of the form

dy

2~ fwy) (31)

it may be solved through separation of variables, when it can be written in the form
P(z)dz + Q(y)dy =0 (3.2)

Then, integrating the equation, we have

[ P@is+ [y =c (3.3)
where C represents an arbitrary constant.

Thus we obtain the general solution to the equation (3.1).

Below are some examples to illustrate this kind of differential equations.

Example 3.1. Let's assume we have the differential equation

d
% = ya? (a)

This equation can be reduced to the form (3.2) as

Then, integrating we have
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3
xXr
Iny— > = d
ny- T = (@)
Simplifying
y=es “=Ces C=e (e)

That is, (e) satisfies (a), and is a general solution.

Example 3.2. Solve the following differential equation

dy 3z —y

dr x4+ 2y

Clearing fractions (a) is transformed into

xdy + ydxr +2ydy — 3xdzr =0

Looking at (b) we deduct that zdy + ydz = d(xy) and then, by integrating we have

3
ry +y* — 53:2 =C
which is a general solution to the differential equation (a).

Example 3.3. Solve the following differential equation

dy y—22%

dx x + x4

Clearing denominators
xdy — ydr + 2*dy + 223ydr = 0
Dividing by 22 we have

xdy — ydx

5 + 2?dy + 2zydr = 0

x
Since
Y xdy — ydx
i(2)-
x x
Integrating
y + 2%y =C
x

which is the general solution to (a).
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CHAPTER 1 ANALYTIC APPROACH

EXERCISES

Solve the following differential equations:

SOLUTION
d
1. @w_¥ QZC
de x x
d 3
2 —y:y:v2 y=_Ces
dx
dy y
dy x
dr  2+y yry o
dy e’
5. = = y —et=C
dr e¥+1 cry-e
d
6. —y:secysinm siny + cosz = C
dx
dy —y—cosx ,
7. - = xy +sinx = C
dx x
d
8. CA— 2ay —y* =C
dx r—y
d
9. H___Y Wry_ o
dx x + x? x
dy y y o
10. e Z =C
dr  x+ x?cosy x—i—smy
dy sinx —vy
11. == cosy +axy =C
dx x
12. dy _ (2?2 +1)=C
dx 241
dy y(—2z-1)
13. N — 2 -
dx x(r +1) Y+ Ty
dy ye* +y+ e’
14. =" In(e*4+1)=C
dx rer +x 7y +1n(e" +1)
— 272
15, W _y-2rcse Y4 2sine =C
dx x x
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CHAPTER 1 ANALYTIC APPROACH

24 VARIATION OF CONSTANTS METHOD

If we have the differential equation of the form

d*y dy
“ 24 p2 — 2.1
TP+ Qu=R (24.1)

where P, (), R are functions of x or constants.

The general solution is given by the sum of the complementary solution and the particular integral,

that is:

Yg = Ye T Yp (24.2)

where the complementary solution is given as

Ye = C1Y1 + C212 (24.3)

If we want to find the particular integral of the form y, = Ciy; + Csy, through variation of

constants, thus obtaining the system

Chyr + Coya = 0

(24.4)
Ciyi + Coyp = R
where C] and Cy are functions of z.
Eliminating said functions from the system in (24.4) yields
Ci(y1ys — y1y2) = —y2Ro
(24.5)
Co(y1ys — Y192) = yi R
and since
Y1l — Y12 # 0 (24.6)
we have
R R
Cr=— / N L o A / SIS (24.7)
Y2 — Y12 Yz — Y12
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from this

R R
Yp =~ / de‘i‘?h / #dl‘ (24.8)
Y2 — Y2 Y2 — Y2

Let us solve an example that will illustrate the case.

Exzample 24.1. Solve the following differential equation.

d*y x dy Y

2
zJ — 1
de? 22+ 1ldr 22+1 v (a)

Equating this equation to zero we obtain the complementary solution through the method studied

in Item 21 that is,
d?y T dy Y

— =0 b
de? 22+ 1dr  22+1 (b)
Since u is worth x, the complementary solution is given by
Y AR - ©
c=CT+cr | ———dr=cx+cr | —F—m— c
Y 1 2 22 1 2 W
integrating
Ye =17 + oVt + 1 (d)
Here
= Yo = Va2 +1
(¢)
y =1 Yo = o
1

Applying the formula in (24.7)

1'3

/W:H
Ci =

(M3

= (m+1 Va2 + lde = —=(x
C=- ) Ea® v [V = 5 1)
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From (24.8)
at 22 +1)?
=gt
? 1
W=F 3

Then, the general solution is

2 1
y:clx—l—cg\/ﬂ—i—l—i—g—g

25 THE ADJOINT AND SELF-ADJOINT EQUATIONS
A) ADJOINT EQUATIONS
a) If we have a differential equation of the form
PR = g
2322 gy TV T

where f may be zero or non zero.

We said it was exact if we could verify that

fo = fitfo=0

(25.1)

(25.2)

In the case that (25.1) is not exact, i.e. we cannot verify (25.2), let us attempt to find a factor to

make (25.1) exact. If we multiply (25.1) by w
d*y dy
Uf2@ + Uf1% + ufoy = uf
For (25.3) to be exact we must have
(wfo)" = (ufi) +ufo=0

Differentiating

u/’f2+2u'f;—i—uf; —u’fl—uf{—l—ufO:O
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Collecting terms

fou” + (2fy — fu' + (fy — fi + fo)u=0

(25.6)

The equation in (25.6) is called adjoint equation of (25.1). Once we find factor u we substitute

it in the equation in (25.3), making it exact. Then, we solve using Item 20.

Ezxzample 25.1. Solve the following differential equation.

d? d
de—;é+5x£+4y:3x+2

Applying (25.6)
2?2 + (4o —Sx)u' + (2 -5+ 4)u =0

or
From (c) we have

Multiplying the equation in (a) by (d) we have

d? d
PY 15022 gy = 302+ 2
dz? dx

As can be seen, we can verify the expression
fo—Fa+f, =0
That is, 4x — 10z + 62 = 0, which implies that (e) is exact. Applying Item 20 we have

23y +22%y = 22 + 22 + )

yZ%{/(xz—l—x%—ﬁ)dx—kCz}
T T

_a:+1+011nm+6'2
y—3 2 x2 x

Then

which represents the general solution to (25.1).
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B) SELF-ADJOINT EQUATIONS

If we have a differential equation of the type in (25.1); that is,

d?y dy
f2@+f1%+foy—f (25.7)
and we verify that
fo="H (25.8)
the equation in (25.6) becomes
fou" + (2fr = fou' + (fy = fi + fo)u=0 (25.9)

or

fou" + fiu' + fou=10

That is, the adjoint equation in (25.1) is the same equation in (25.1) equated to zero, provided

that we can verify the identity in (25.8).

The differential equations in (25.7) are called self-adjoint equations.

Ezxample 25.2. Solve the following differential equation:

cd  Zd @0 (2)
Here
1 , 1 1
fQZE fzz—; flz—ﬁ (b)

As can be seen, we can verify (25.8). This means the adjoint equation coincides with the equation

in (a).

" o
From there
u=x (d)
Then,
Py ldy vy
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Once we multiply the equation in (a) by w, it becomes the exact one in (e) since we can verify

fo—ftfl =0

Due to this
Computing

y=Cixlnzx + Cyx
being this the general solution to (a).

A differential equation of the form

d? d
fzd_azz +f1£ + foy=f

can be transformed into the self-adjoint form and can be written as

Py  hdy  fo_ f
2 fde  f fa

The self-adjoint form of an equation can be written as

d*y dy
AT L 4% By =c
dz? + dz + 5y

or
¢y Ady B _C
dr2 " Adr " AYT A

From (25.13)

A" dlnA
A dx
And since (25.14) has to be equal to %
2
dln A fl ff—ldw
= = A= T
dz f2 = -
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Then
B f fO f U S dz
—_ =2 s B= 25.16
AR TR (2510
C f f f fl dz
— =L 0= 25.17
AR TR 240
Substituting values in (25.15), (25.16) and (25.17) in (25.12) gives the equation in (25.10) in its

self-adjoint form.
ffld dy h ffldxdy Jo ffldac f ffldx
+ 20 25.18
T 7 (25.18)

As we can observe from (25.18), to transform a differential equation (25.10) into an self-adjoint

we must multiply the equation by the value of z:
(25.19)

Observation 25.1. In the latter expression (25.19), if fi is the derivative of fo, z takes the value
of 1; that is, the equation in (25.1) is an self-adjoint.

Exzample 25.3. Solve the following differential equation by transforming it first into an self-

adjoint.

dy  dy

AT AN Ty

TSt =7 (a)
Multiplying this equation by
]_ ffl dz T

z = =e
5
since in this case f; =1, fy = 1, that is
Ay Ldy
dw2+6%—26y—xe (b)

The latter is the self-adjoint form of (a) and it is not exact. Applying (25.6) we obtain

e“u" + e"u' — 2e"u =0 (c)

From here u = €®.

Then, the expression in (b) becomes exact when we multiply it by w. That is,

— 2e%y = g% (d)
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Since (d) is exact, applying the expression in (20.9) gives

€2xy/—|—(—262x+€2z)y_/$2€2Idl'+01

or
2 2 e* [, 1
e“y’+e’”y:—(x —x+§)+01
, P x+1+Cl
S T BT
Then
T $2 X 1 1 —z
y=e |:/(?—§+Z+T)€ d$+02:|
2 —x e T
y:ew{ _@—Z’dx—/ dm+/4d:ﬁ+/7dw+C’g]
Integrating
2
y:%—g———l—Cle_Q + Che”

which represents the general solution to (a).

EXERCISES

Solve the following exercises using the methods presented in this Item.

SOLUTION
d2y dy Cl Cg
347y 2 Y _ _4 b
1) = dm2+4x dx+2xy 0 y=
>y  1dy y ? Cix Oy
2 — 4= - = =2 =— 4+ — 4+ —
) dm2+xd:v x? . Y 4+ 2 *
d*>y dy x?
d2y dy iL‘Cl+CQ
4 24 1) 4 dx—2 42y = =——>
) (x+)dx2+xd+y 0 oa
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CHAPTER 2

GEOMETRIC APPROACH

1 GEOMETRIC INTERPRETATION OF DIFFERENTIAL EQUATIONS

If we have a first order differential equation in the form
y' = f(z,y) (1.1)
with the solution

F(z,y,C) = (1.2)

\\ :

or Y
y=p(z,0) (1.3)

As may be seen in the latter expression, (1.3)

represents a family of solutions, by assigning

different values to the constant C. /

If we plot equation (1.3) in the cartesian — ]

plane, assigning C' an arbitrary value, we Figure 2.1

obtain an integral curve of the differential

equation in (1.1).

If constant C' takes all values we obtain infinite solutions that are represented by infinite curves,
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which are called family of integral curves. (Figure 2.1)

A first order first degree equation determines a single slope in any point P(z,y) and thus a single

integral curve going through that point.

Example 1.1. Find the equation of the curve that goes through point P(2,1) and satisfies the
differential equation:

y +2=0 (a)

Solving through separation of variables we obtain the equation of the infinite integral curves, that

18
22

y=-5+C (b)

which represents a family of parabolas. (Figure 2.2)

Since the curves belonging to this family must

go through point P(2,1), in (b) we substitute Y
the values of the given point for x and y, thus g
obtaining 3
4
1= —5 —+ C (C)
1 P
where C is worth 3. Substituting this value in (b) r
™
we have the equation of the curve going through o /7‘
&/
the given point which satisfies the differential /
1l
equation in (a). That is, >
2 Figure 2.2
y=--5+3 (d)
2
22
Substituting 2 for  in (a) we obtain the slope of the line tangent to curve y = 3 + 3 on point

P(2,1). This line's equation is y = —2z + 5.

2 METHOD OF THE ISOCLINES

Many times it is convenient to apply methods to obtain the solutions of differential equations that

would be difficult to solve in an analytical manner.
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One of these methods is that of the 2soclines; a graphical method that is very convenient when

the solution is not so hard to plot.

Let's consider the following differential equation:

y' = f(z,y) (2.1)

By assigning values to x and y we obtain a y
series of slopes, which represent those of the
tangent lines to the integral curves.

Representing the different points with their
corresponding slopes on the cartesian plane
gives us a field of directions (Figure 2.3),
where the segments correspond to tangent
lines to the different integral curves. This is

called directional field.

. e _e—  _~ _e

VN
Yo
NN
VN
T

A S O Y 4

Figure 2.3

Representing integral curves with points of the directional field is very complicated. We reduce

the work by joining all the points of the segments with like slope.

That is, in (2.1)
vy =K K constant (2.2)

Or the same

flzy) =K (2.3)

This equation which satisfies curves going through points of like slope are called isocline curves.

(Figure 2.4)

As we know, integral curves must intercept the isoclines tangent to the segments that each of the
latter intercept. That is, to plot integral curves satisfying the differential equation in (2.1) we
must proceed in the following manner: We assign different values to constant K in the expression

in (2.3), K1, Ky, K3, . ... If we take value K; we have

y1 = F(z, K1) (2.4)
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This is a curve representing an isocline which cuts segments of K; slope.

K

Ky

Figure 2.4 Figure 2.5

Repeating the process and varying the value of K as many times as exactitude requires, we obtain
the family of isoclines. Then, we may draw the integral curves, tangent to the different segments,

as can be observed in Figure 2.5.

This method of the isoclines has the advantage of giving us all of the integral curves.

Exzample 2.1. Find the integral curves satisfying the following differential equation:

By making

we thus obtain the isocline curves given by the equation

K
T =—
2

()
which represent parallel lines to the y axis, giving different values to constant K. (Figure 2.6)
That is, if in the expression in (c) we make

K=0 wehave x=0

1 1
K =— I
2 T
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K=1 x:%
K=2 z=1
Yy
K =-2| K=2
K =14 =2 T
K=6 z=3 1
1 1 K=-4 \/ K=4
K=—- r=—— x
2 4 \\ //
! %%
K= — - __

K=-2 r=-—1 SRS 8
Figure 2.6

K=-4 xr=—2

K=-6 T =-3

Y=5; (a)
By making
Y
K== b
o (b)
That is
y=2Kz (c)

we thus obtain the equation of the isoclines that represent lines going through the origin. If in

the expression in (¢) we make

K =-3 wehave y=—6x
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Figure 2.7

These values allow us to plot the integral curves satisfying the differential equation in (a). These

curves represent parabolas having the equation y = ¢y/z. (Figure 2.7)

Ezxzample 2.3. Find the integral curves satisfying the differential equation

, 2z
y =
2y — 3z
By making
K 2z
2y — 3x
where
(243K B
Yy = 57 T =mx

This is the equation of the isoclines representing lines going through the origin.

If we vary the value of K, that is

K=0 we have m = o0
3
K: = —
00 m 5

2
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1
K=—1 _ -
m=y
1
Ke—> m=-—>
3 5

We obtain a series of directions with which
we can plot the integral curves that satisfy

the differential equation in (a). (Figure 2.8)

1
K=1 K=—-
The asymptotes may be obtained in the 3

following manner: Figure 2.8

Since the value of K must be equal to that of m, from (c) we have

2
K = d
2m — 3 (d)
By making the right side equal to m:
- (©
=m e
2m — 3
we thus obtain a second degree equation
3
2
——-m—-1=0
m’—gm
Solving we obtain
1
myp = 2 mo = —5

These values represent the slopes of both asymptotes, which turn out to be perpendicular to each
other.

Example 2.4. Find the integral curves satisfying the differential equation.

We make

where
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v= (125 ) o =me (©

is the equation for the isoclines representing the lines that go through the origin.

If in (c) we make

Y
m =1
K=1 we have m = oo K=1
K=0
K=0 m=1 K=o
I N r
\ \ \ \ \ \ \ \
K =0 m = 0
K=2
m=—1
These values allow us to plot the integral Figure 2.9

curves. (Figure 2.9)
If we make K = m we obtain a second degree equation yielding solutions with complex roots,

reason for which there are no asymptotes.

Example 2.5. Find the integral curves satisfying the differential equation.

y =2+ y? (a)

where the equation for the isoclines is

Py =K (b)

which represent concentric circles.

By making

Figure 2.10
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These values allow us to plot the integral curves. (Figure 2.10)

3 GEOMETRIC PROBLEMS

Example 3.1.

a) Find the differential equation whose solution represents the oo parabolas.

y = az® (a)

Since by assigning different values to a we obtain infinite curves, if we eliminate the constant
by differentiating in (a) we obtain a differential equation, which expresses a property common

to all curves.

That is, differentiating in (a) we have

y = 2ax (b)
from where
y
a=g (c)
Substituting (c) in (a) we have
2y =y'x (d)

The solution to this differential equation represents parabolas whose vortexes coincide with the

origin. (Figure 2.11)

y=1"+C

L

Figure 2.12

Figure 2.11
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11 THE EULER-CAUCHY METHOD

a) Let the following be a first order

differential equation of the form

y = [f(z,y) (11.1)

We know that if we assign a pair of values
(x;,y;) to the solution of (11.1), we obtain
the value of constant C' of the integral
curve going through that point. Given a
point FPy(zg,yo), the Euler-Cauchy method
consists of finding an integral curve going

through that point.

P h

f(@o, yo)h

I h

Y1
Yo

Figure 2.35

As we can see in Figure 2.35, translating the tangent to the integral curve from point P to point

P, we obtain the coordinates of the latter point, which are:

$1:$0—|—h

(11.2)

1 = yo + Ayo = yo + f(x0, Y0)h

Then, we use this pair of values to compute the new slope f(z1,y1), obtaining an approximated

value. With this slope and the pair of values (z1, ;) we obtain the new approximate values of

To=x1+h Yo =1 + Ays = y1 + f(z1,y1)h
T3 =29+ h Ys = Yo + Ays = yo + f(22,y2)h

(11.3)
Tn = T(n-1)+h Yn = Y1) + AYeu-1) = Yn-1) + [ (@@-1), Y1)

We so obtain a series of values (z;,;), which determine an approximate solution in the form of a

polygonal called Fuler-Cauchy polygonal.
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This polygonal is less likely as we move farther from given point F,. The error that appears when
computing y; is dragged on to compute slope y,. That is, the values y, beyond n = 1 are affected
by errors, which become greater as the equation becomes more dependent on y. In other words,
this method is not advisable for functions that vary fast with the argument. Thus, we must take

the smallest possible values of h to decrease error.

Ezxzample 11.1. Find the values of y for x = 1.1, 1.2, 1.3, 1.4, ..., 1.9, 2.0 knowing that yy = 1

for x¢g = 1, which satisfy the differential equation

Y
/: 2_
y =27 (a)
Applying what we saw in (11.2) and (11.3)
Ty = 1 Yo = 1
2.1
1.2
To=114+01=1.2 Yo = 1.2+QHO.1§ 1.418

And proceeding in this manner we obtain a table of values:

T 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Y 1 1.20 | 1.42 | 1.65 | 1.91 | 2.18 | 247 | 278 | 3.10 | 3.45 | 3.81
Y 2 218 | 236 | 254 | 2.72 | 290 | 3.08 | 3.26 | 3.44 | 3.62 | 3.81

y = x? 1 1.21 | 1.44 | 1.69 | 1.96 | 2.25 | 2.56 | 2.89 | 3.24 | 3.61 4

Error — 0.01 | 0.02 | 0.04 | 0.05 | 0.07 | 0.09 | 0.11 | 0.14 | 0.16 | 0.19

The values were approximated up to the second digit after the decimal point.

The latter two lines in the table show the exact value for y and the error committed by the method.

We can see that as we move away from point P(1,1) the error increases.

b) Up to this point we have studied the Euler-Cauchy method in relation to first order differential
equations. We will now deal with a method for solving second order differential equations of the

form:
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y' = f(z,y,9) (11.4)

The Euler-Cauchy method provided us with
a solution in the form of a polygonal. For a
second order differential equation as the one
in (11.4) we see that on a point 2, we obtain

an ordinate yo and a slope y;, (Figure 2.36).

The latter values imply a concavity y( that

is constant up to a point z; = xg + h.

This curve is a parabola of the form:

512'2

5 (11.5)

y=1yo+yr+y’

Then, from (11.5), for a very small interval

h we will have a value y;. (Figure 2.37)

() Zyo+y6h+yg%2 (11.6)
Differentiating (11.6) we have
Yy = Yo + %o (11.7)
And substituting in (11.4) gives
yi = f(z1,91,9)) (11.8)

That is, a new concavity y{, value which
allows us to compute a new value for y.
(Figure 2.38)

2

h
Yo =y + Y1h+ y”? (11.9)

"

Yo

Zo

Figure 2.36

oM }LQ
Yo >
yo'h
Yo
-
Zo |
Figure 2.37
Yy
B
Y1 B
yi'h
Py
Py
1
n hn
Yo
h h T
Lo 1 L2
Figure 2.38

This concavity y{ determines a new parabola arc that goes from z; to x1 + h = 5.
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And successively we obtain the different values for ,,, which determine a solution in the form of

a parabolic polygonal, with a constant concavity from point x; to x; + h.

Using the Taylor series and making x — xg = h

2 3

h
y=vo+yoh+voo +v o -

21 0 31

(11.10)

This method coincides up to the third term, thus implying that the error is of order k3. Instead,

in the equations of first order we had an error in the order of h?, greater because the value of y

coincided up to the second term.

Ezxample 11.2. Solve the following differential equation:

Y =2y — 22°

with initial conditions yo = 1 and y;, = 0 when zy = 0.

For x =0, 0.2, 04, 0.6, 0.8 and h =10.2

Solution: y = 2% + 1

h? h? Yy
B . 'h " = f =k Error
T Yi Y; Yi 3 fi D) i exact
, 0.22
2o =0 yo =1 yhh = 0x0.2 =0 ko = 2—— = 0.04 1 -
h2
x1 =x0+h y1=y0+y6h+y6'? y1h = yoh + 2ko
z1 =02 y1=14+0+0.04=104 y)h =040.08 =0.08 k1 =0.04 1.04 -
y1 = 1.04
/ 2 h2 ' !
xg =x1+h y2:y1+y1h+y1? yoh =y h + 2k1
29 = 0.4 yo = 1.04 4+ 0.08 + 0.04 = 1.16 y4h = 0.08 4+ 0.08 = 0.16 k2 = 0.04 1.16 -
y2 = 1.04
/ 1 h2 ! !
z3 =z2+h y3:y2+y2h+y25 ysh = ysh + 2k2
x5 = 0.6 y3 = 1.16 + 0.16 + 0.04 = 1.36 y4h = 0.16 + 0.08 = 0.24 ks =0.04 1.36 -
y3 = 1.36
/ " h2 ! !
x4y =x3+h y4:y3+y3h+y3? yyh = ysh + 2k3
z4=0.8 ys = 1.36 +0.24 + 0.04 = 1.64 yyh = 0.24 +0.08 = 0.32 k4 =0.04 1.64 -
ys = 1.64
5 =x4+h ys = 1.64+0.32+0.04 =2 yth = yyh + 2ky
ks = 0.04 2 -
T5 = ys = 2 yth =0.32+0.08 =04
Yo = 24 0.4+ 0.04 = 2.44 yhh = yih + 2ky
xe = x5+ h
ye = 2.44
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2 h2
Note: Values fi? =k, =y 5 were found in the following manner:

Forx =0 and y = 1:

" 0.22
yo=2=/fp then ky= 27 = 0.04

and so on successively to find the k; values.

As we can observe there were no errors. This does not mean that the method is exact, but that
the solution to the differential equation is a second degree parabola, which signifies that the arc

concavities are all constant.

In a general case, the parabolic polygonal would increasingly drift from the real solution as we

got farther away from point x;.
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CHAPTER 3

METHODOLOGIC APPROACH

Operational and Numerical Methods for Solving Differential Equations

INTRODUCTION

We will divide this chapter into three parts, namely:

e Part One: It deals with operator D as a method for solving linear differential equations
with constant coefficients. Although, in the analytic approach, we have already seen how to
solve these equations by the variation of constants and undetermined coefficients, operator
D helps us shorten the way to finding general solutions. Besides, operator D allows us to
find a particular integral that satisfies the initial or boundary conditions without having to

first find the general solution, thus being a good tool for engineering applications.

e Part Two: It deals with the Laplace Transform as a mathematical instrument for solving
differential equations. It is worthy noting the use of this method in solving linear
differential equations with constant coefficients, where the independent term is a function
of the periodic or impulsive type. We will also observe the relation of Laplace Transforms
with the solving of linear differential equations with variable coefficients, such as
polynomials of the independent variable, because of their importance in mathematical

applications of different fields of Physics and Engineering. (See Applications Approach)

e Part Three: This is an introduction to methods for numerical solving of differential equations,
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considering the series as a base of those methods.

PART I INTEGRATION OF LINEAR DIFFERENTIAL EQUATIONS

USING OPERATOR D

1 OPERATOR “D”

d
Operator D is defined as o = D, and acts on a function y = f(z) as

x
d dy
D =Dy=—y=-—">=1 1.1
flz)=Dy=—y=—"=y (1.1)
Then, applying D to (1.1)
d (d >y dy
DD =DDy=—|(—-—y|=-—=—=19" 1.2
f(r)=DDy =T ( dxy) Ty _dv_, (1.2)
We convene that DD = D?, and repeating the procedure,
d™y
Dty = —2 — "
Y Jr Y
Because of the former we have the following properties:
d*(yr +y2) _d"yr | d"ys
I. D" = = =D" D"
(11 +92) e Tt y1 -+ D"y,
dr dr
II. D"(py) = (vy) =p J_ pD"y with p constant,
dzx™ dz™
" " dm dn derny .

IV. (D™ +D")y = (D" + D™y

V. D" +(D"+D%)]y =[(D™+D") 4+ D]y

VI. (D™ D")y = (D" D™y
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VIL (D—-a)(D—f)y = (D-a)(Dy—py) =D’y —(8+a)Dy+aby = (D—a)(D—pB)y with o, 3

constants.

Property VII tells us that D commutes for translation by constants o and . Nonetheless, we
must bear in mind that this is not always possible if a and 3 are not constants. As a consequence
of the aforementioned properties, operator D is linear. Besides, it has the properties of power and

factors just like polynomials.

In other words, operators behave as if they were algebraic quantities and can be manipulated

algebraically subject to the laws above.

Operating
D'y+p D" 'y+ .. +py=D"+p D" 4p D"+ p)y (1.3)

with pq,...,p, constants. We then convene it can be written in brief as ®(D)y.
We will now proceed to consider properties and formulas that contain operators.
Let De™ = re™ ; D?e™ =2’ ; ... : D" e’ = r"e’™.

Then

(I)(D>€r:v — (Dn _|_p1 Dn—l +p2 Dn—2 4. +pn71 D+pn)erm —
(1.4)

= (r" 4"+ o A A ppT + p)e = B(r)e™

And ®(D)e™ = &(r)e"™.

Now let y = " p(x)

D(e"p(z)) = " D p(z) + re™p(x) = (D +r)p(z)

D*(e™p(x)) =D [e™*(D+r)p(x)] = e™(D* +7 D)p(x) + re’*(D +7)p(z)

=e"(D? 42r D +12)p(x) = e"*(D +7r)%p(x).

Repeating the procedure above we may suppose the following expression valid for all £ and by
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induction see for k + 1.

D*(e™p(x)) = e™(D +7)"¢(x). (1.5)
Let's see for k+1. Operating both members of (1.5), then
D¥ (e p(z)) =D [e"(D+r)kp(z)] = e D(D +r)fp(x) + re™ (D +r)fp(z) =
= ¢"(D47)(D +r)fp(z) = (D +r) ()
Then it is valid for k£ + 1. That is, (1.5) is valid for all k.

Let us now see applying the validity of (1.5)

®(D)y = 2(D)(e"p(x)) =

= (D"+p1 D"+ . 4 pao1 DApa)(€p(x) =

= [(D+r)" +p1 D+r)"" .4 pact (D +1) + po] p(x) = o
— (D +r)p(a).
If in property (1.6) we make ®(D) = (D —r)"
(D—r)" (¢ p(x)) = € D" o(x) (1.7)
And considering that y = e"p(z), equation (1.7) may be written as
(D —r)"y = " DF(e7y) (1.8)

With these elements we will deal with differential equations through the application of operators.

2 INTEGRATION OF HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS

Let the homogeneous linear differential equation with constant coefficients be

dny dnfly dn72y dy
i F Do +pay =0 2.1
don + D1 o1 +p2dm”—2 t...+p Uy + DPnY (2.1)
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Pi, - .., Pp constants.

Through the change of notations seen before:

(D" +p D" '+ 4P DHp)y =0 (2.2)

In brief,

Extending VII to (2.2)

®(D)y =D "+p D" .. 4 p 1 DHpyy =

(2.3)
=D-r)(D=ry)...(D=r)y=0
where 71, ...,r, are the roots of the auxiliary equation ®(r) = r" +pyr" ' + .. . +p, 17 +p, =0
and where this factoring in (2.3) is possible whenever py, ..., p, are constants and consequently
ri,...,r, are too. This is called operational factoring.
1st Case. rLETYFE L FE T,

The solution to (D —r,)y = 0 is the solution to (2.3). If y, is such that (D —r,)y, = 0 replacing
in (2.3)
d(D)y, = (D—-r1)(D—ry)...(D=r,_1)(0) =0

d d
Solving d—y —rYn =0 Y rpdx.
x

n

Then Iny, =r,x +c¢, =r,x+1n C,
And y,, = e“re™® = C,e™" is a solution to (2.3).

Then by commutative property (VI of (1.1)) we have that
yp = Cre"* sy =Che™ Loy, = Che™”

are all solutions to (2.3).
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Then, by I of (1.1), the sum of two o more solutions is a solution of the homogeneous linear

equation. That is,

y=0Ce"" ...+ Ce™m” (2.4)
is a solution to (2.3).
2nd Case. Let’s suppose ®(r) = 0 has a root of multiplicity P.

Then ®(r) contains the factor (r —r1)”, that is
O(r) = 1(r)(r — )"

where the polynomial ®(r) is of degree n — P with ®;(r1) # 0. Then our differential equation

may be written as

®(D) = @1(D)(D —ry)"y =0 (2.5)
And because of the former, y = ¢ is a solution to (2.5).

Now let y = €"%¢p(x). Using (1.7)
©1(D)(D 1) (e""p(x)) = &1 (D)e* D (p(2)) = 0

Then, as €** # 0 we obtain D¥(p(z)) = 0. Note that ¢(x) is a polynomial of degree P — 1 and
we obtain p(z) = Cy 4+ Coz + ... + CpaP~!. Finally,

y=e"(C1+ Cox+ ...+ Cpa?™) (2.6)

That is, the part of the general solution that comes from the root r; of multiplicity P is given by
(2.6). Then, the general solution will be given by the solution of ®;(D)y = 0 added to (2.6), thus

completing the n constants.

3rd Case. The auxiliary equation has complex and conjugate roots.
Let ry = o + 7 and its conjugate ro = a — [i.

That is, ®(r) = &1 (r)(r — r1)(r — ra).

The differential equation is ®(D)y = ®1(D)(D —r;)(D —rg)y = 0.
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Let
y = Cle(a+ﬁi)w + 026(a—6i)x (2.7)

Since el®+8)7 — ¢¥(cos B + isin 3), (2.7) becomes

y =e*[(c1 + ¢2) cos fx + i(cp — ¢3) sin fx]
(2.8)

= e* [C cos fx + Cysin Sz

where C and Cy are arbitrary constants.

Let’s discard that (2.8) satisfies the equation ®(D)y = 0:

®(D)y = @1(D) (D —(a+ pi)) (D —(ar = pi)) y =
= 2 (D) [(D —a)® + 57y
®(D) [e**(C} cos Bz + Cysin fz)] = @1(D) [(D —a)? + %] [e**(Cy cos Bz + Cs sin fz)]

By (1.8)
®(D)y = ®1(D)e**(D? +8%)(C} cos Bz + Cysin fz)

Developing (D* +32)(C} cos Bz + Cy sin Bx) = 0.

Then (2.8) is the solution to ®(D)y = 0.

3 LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

The general integral or general solution to a differential equation of higher order

dny dn—ly dn—2y dy
— 4. .. n—1—"— nlY = 3.1
T TP T F e e P Py = f(2) (3.1)
in which f(z) is a function of x and py, ..., p, are constants, is the one we obtain by adding the

complementary solution (solution of ®(D)y = 0 as was seen in item 3) and any one particular

integral from (3.1).
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Observation 3.1. Let us first note that we may write f(x) = fi(x) + fa(x) and let’s consider

D)y = fi(x) @(D)y = fo(w) (3.2)

We find two solutions yp, and yp, solutions to (3.2); that is,

®(D)yp, = fi(z) ®(D)yp, = fa(z)

and we obtain

®(D)(yp, +yp) = ®(D)yp + @(D)yp, = fi(2) + fo(z) = f(2).

In other words yp, +yp, is a particular solution of (3.1), with which we conclude that by unfolding
f(z) we may apply some method to find yp, and maybe some other method to find yp,, since there

are different methods for finding particular integrals.

4 PARTICULAR INTEGRALS
In the analytic approach we dealt with the method of variation of constants and the method of
undetermined coefficients to find particular integrals.

We will now see different procedures to find those integrals and which are called operational

methods.

Let the differential equation be
d(D)y = f(x) (4.1)

The polynomial linear operator ®(D) is given by

®(D) = D" +p1 D" 4pa D" 4 . (4.2)
Clearing from (4.1)
1 1
= Hm/ \W) = x 4.3
V=357 = o @ (1.3
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1
To interpret the nature of the operation let's start with Dy = f(z), which implies that y = D f(z).

d
Now, Dy = d—y = f(z), that is y = [ f(x)dz, so it is natural to write
x

v= 5@ = [ fays

Analyzing
1 1
v= 5@ = [ fa)da

y = //f(ﬂr)dﬂr2

which means to integrate f(z) twice successively.

Let us now consider

1
y=p5/@
d<yeimj) o dy re —rx __ re dy R
= d:pe rye”" =e - y | =e"f(x)

Integrating

ye " = [e T f(x)dr =y =€ [ e f(z)dx

dx

d
In other words, if & ry = f(x) it implies that y = €™ [ e f(x)dx

Thus, from the latter

Note that when r = 0, this equality is reduced to (4.4).

(4.4)

(4.7)

(4.8)

Let us now consider the different operational methods for solving (4.3) or solving the differential

equation:
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First, we try to find a particular integral.

Solve

%—pr:Q (49)

in which P and () are functions of z.

d
Solving d—i + Py=0 yy = Ce~J Pdx

A particular integral is given by yp = e 7* [ e Qdz .

Then, the general solution is given by

yo = e S P {/ e Qdx + C’} (4.10)

where (4.10) represents the solution to the linear equation (4.9).

5 METHODS

METHOD 5.1 SUCCESSIVE INTEGRATIONS. The method consists in solving a succession

of differential equations of type (4.8), differential equations of first order.

1 1
y me(fﬂ) DD —ry) (D=1 f(fr)z

:erlx/er1x€r2x/ —Trox rgx/ / frnzf

We may apply the method if some or all of the roots rq,...,r, are equal.

METHOD 5.2 DECOMPOSING OPERATORS INTO SIMPLE FRACTIONS. The successive

integrations of the method above may complicate the search for a solution; so given

1 1
Y= Wﬂx) - (D—=r)(D—=rz)...(D—ry)

/()
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It would be better to break the operator into simple fractions:

- 1 - Al A2 An
Ve T Do) T T T Do)

with Aq,..., A, being constants to be determined.

The operator within brackets is called Heaviside Development of the inverse operator . Again,

by (4.8) we have

1
o(D)

y=——f(z)= Ale“”"/e_”xf(x)d:p—kAgeT”/e_”””f(a:)da:—l—. : .+Aner"x/e_”$f(x)dx (5.1)

which constitutes a series of simple integrals.

METHOD 5.3 OPERATOR TRANSLATIONS

By (1.6)
(D) (e"p(z)) = (D +r)p(x) (5.2)

We will demonstrate the same equivalence for the inverse operator.

1
(D +r)

(D) p(x) = e (D +T)m<ﬂ(x) = e"o()

Equating the first members of the equations above we have

TT T 1
cI)(D)(e p(z)) =e mﬂw)

(5.3)

Properties (5.2) and (5.3) are called rules of exponential translation.

They are used to move exponential functions outside the application of operators. Thus the name

of translation and inverse translation of operators, names for (5.2) and (5.3), respectively.

Let's see by (1.8):
(D —r)Fy = ™ D¥(e™"y) (5.4)
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erx ka e—rm em: Dk(e—rxy> — 1y (55)
N————

Equation (5.5) is just the identity applied to y in the left-hand side of the equation, written as

multiplications.
However
e DM(e™y) = (D —r)*y by (5.4)
Then, in (5.5)
e D* e (D —r)fy] =1y (5.6)
Then, from (5.6), [(D—r)*] Tly=er D~ (e"y)
Finally, we have (D —r)~Fy = e D *(ey) or
1 1
— 7'"E_ —rx 5 7
(D _T)ky € Dk(e v) (5.7)

METHOD 5.4 IF f(x) IS IN THE FORM z™

g™ = (Ag+ A D+A; D’ +... + A, D")2™ with Ay # 0. (5.8)

The expression within brackets is obtained by developing according to increasing powers

(D)’
of D and eliminating all terms after D". They are deleted because D" 2™ = 0 if n > m.

METHOD 5.5 IF f(x) =e* Let's see

(I)(D>60¢J: _ sz Dn—i 0T — Zpian—ieaa: _ (I)(a)eax
i=0 i=0

1
Multiplying the above by W,

That is,
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@ T — ax
() @(D)e e
Finally,
1 ar 1 azr
(IJ(D)e = (Il(a)e (5.9)

METHOD 5.6 IF f(z) = zp(x)

Let ¢ be a function of z, that is, ©» = ¥(x). And let a function, u(z) = u such that u(x) = ()

or u = x.
Du=xD¢y+¢
dD"
D"u=2D"
u=xD"¢Y+ ( 7D ) (0
Then
n— ’L n—i Dn '
zpin (@) = zpzw w+zpl( )o-
(5.10)
= pwD"" ¢+ & (D) = 2®(D)y + ' (D)y)
i=0
Now let
p=DW b= (5.11)
®(D)
Then, applying (5.10) on (5.11) we have
o(D) L = 2®(D) + ®'(D)
s T T em)” (D)7
Clearing the first term of the right-hand side of the equation
rp =P(D)r—xp — ’(D)L
T em)” (D))"
Th ti L both sid h
en, operating (D) on both sides we have
1 1 d'(D)
T =1 Y — % (5.12)
d(D) d(D) [®(D))°

Then, by (5.12) and since f(x) = x¢(x),
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4 THE ADAMS METHOD

We may apply this method whenever we have some initial values; that is, z1, 22, x3,..., 2, and
their corresponding values of yq,y2, 93, ..., yn. These can be found using the Taylor series or any

other method studied before. The method consists of finding a value y,,.1 for x = z,,1 = 1 +nh.

If we have a differential equation of the form

Y (x) = fz,y(x)) (4.1)

with initial conditions y = yy when x = xy, and we know the values yi, y2,ys, - . ., Yn, through the

Adams Method we can determine the value of y,, .1, by proceeding in the following manner:

Integrating within the interval (z,, x,11):

/%+1 Y (x)dz = y(ni1) — y(zn) (4.2)

From (4.2) and since

h=x,41—x, (4.3)
Tn+h
Yans) =yl + [ Fla@)ds (4.4
Making a change of variable
r=ux,+ ht
(4.5)
dr = h dt

Replacing (4.5) in (4.4) and changing the limits of integration we have

Y(rpi1) = y(z,) + h/o fxn + ht,y(z, + ht)] dt (4.6)

We now have to determine the expression inside the integral. Let's try to find it in the form of a

polynomial P(z), because it is easier to integrate.

Using subtractions

Afn—l = fn - fn—l

Aan—2 - Afn—l - Afn—2 - fn - 2fn—1 + fn—2
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A?)fnf?) = A2fn72 - A2]07173

(4.7)
If we make
Afn—l (I - xn) A2fn—2 (l’ - l‘n)(x - :L‘n—l)
P(z) = f,+ y 1 + % o] + ... (4.8)
From this expression it may be observed that if
Afp1Tpn1— Tn
pmwan  Pa)= fut ST =
: (4.9)
T = Tp-2 P(x):fn_zfn+2fnfl+fn_2fnfl+fnf2:fnf2
Thus we arrive to the fact that for x,,x, 1,2, 2,...,Zn_m, the polynomial takes the values

Jos foe1s fa—2, - -+ Ju—m, respectively; which implies that P(x) is the polynomial we were looking

for.

From expression (4.5)

T—%, T —Tp1 X—Tn+h

=t e T L (4.10)
Later, replacing (4.10) in (4.8)
P(t) :fn+Afn1%+A2fn2¥+... (4.11)
Then substituting in (4.6)
Y(zpi1) = y(x,) + h/o1 {fn + Afnl% + A2fngw + ... dt (4.12)
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Integrating

B 1 5 ., 3 s 251 .,

For example, if values g, x1, 22, 3, x4 and their respective g, y1, Y2, Y3, Y4 are given as data we

can diagram a table which will allow us to compute ys, yg, y7, - - .-

(%o Yo fo

Afo

oy h A% fo
Afi A® f

Data{ =2 %2 fo AZf, At

Af A’ fy

T3 ys  f3 A%f, A*f, (4.14)
Afs A’ fy

\ T4 Ys  Ja A*fs

Af

Ty Ys f5

Te Ys

Below is an example to illustrate the method.

Ezxzample 4.1. Given the differential equation

y=y+zx (a)

find the values from zy = 0, yp = 0 to = 0.4 with A = 0.1, using the Taylor series.

For 2o = 0, 1 = 0.1, x5 = 0.2 we are given the values of yg, y1, y2, respectively. Applying the
Adams Method establish the values for ys, y4.

For xo =0, 4,=0
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(0.1) N (0.1)3 N (0.1)* N

T = 0.1 Y1 =

2! 3! 4!
y1 = 0.005 + 0.000166 + 0.000004 + ... = 0.005170
- 022 (02°  (0.2)*
yo = 0.02 4+ 0.001333 4 0.000066 + ... = 0.021399

With these data we can determine the table to compute the values of ys, y4.

T Yi Y; Afi Af?
( 0 0 0
0.105170
Data < 0.1 0.005170 0.105170 0.011059
0.116229
0.2 0.021399 0.221399 0.012183
K 0.128412
0.3 0.049811 0.349811
0.4 0.091720

Applying formula (4.13)

1
ys = 0.021399 + 0.1 (0.221399 + 50.116229 + %0.011059> =

= 0.021399 + 0.1 (0.221399 + 0.058114 + 0.004607) = 0.049811

Then,

1 )
ys =0.049811 + 0.1 (0.349811 + 50.128412 + 30.012183) =

= 0.049811 + 0.1 (0.349811 + 0.064206 + 0.005076) = 0.091720

We could compute another column and determine y5 and successively g, y7, - . ..
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5 THE RUNGE-KUTTA METHOD

If we have a differential equation of the form

y/ = f(l',y)

with the initial conditions y = 39 when x = x,.
It can be written as

y(@) = o + / " f e, y(a))de

By using the Simpson Rule, (5.2) can be expressed as

Ynt1 = Yn + (k1 + 2ka + 2k3 + k) /6

kl - hf($n7yn)

1 1

k2 = hf(xn + _h‘7 Un + _k1>
2 2
1 1

ks = hf(z, + §h’ Yn + §k2)

k4 = hf(xn + h> UYn + k3)

(5.1)

(5.2)

(5.3)

(5.4)

Ezxample 5.1. Determine, using the Runge-Kutta method, the values for y;, y» of the differential

equation

y=y+u

with the conditions yy = 0 when xq = 0 for an interval A = 0.1.

Drawing a table like before:

x Y y k1 ko ks ky

0 0 0 0 0.005 0.00525 0.010525
0.1 0.00517 0.10517 0.010517 0.016042 0.016319 0.022148
0.2 0.02140

The proof can be seen in “Collatz, Numerische Behandlung von Differentialgleichungen”.
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1 INTRODUCTION

The reason for learning to solve ordinary differential equations through applications is based on
the reciprocity between these equations and their applications. Since once we have the structure

of the corresponding equation, we may attain operating skills by its computation.

We will define these differential equations as a mathematical model isomorphic to the real problem
and approach them knowing that many of the problems appearing in different fields of Engineering
and Physics are solved through linear ordinary differential equations with variable constants, e.g.

the special equations of Hermite, Legendre, Bessel.

Eventhough the Bessel function was obtained to solve a differential equation associated to planet
movements, it appears in many problems of electronics engineering, hydrodynamics,

thermodynamics.

2 THE HERMITE EQUATION
This equation is of the form
d .
— —x—+my=20 m > 0 integer (2.1)
We will find the solution by using power series,
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y=) aw
k=0
y = Z kagxk1
k=0
y" = k(k — 1)azaz™?
k=0

Substituting (2.2) in (2.1) we have

i/{: —1akx Zlmkx +mZakx =0
k=0

or, the same,
Z kE+1)(k+2)agiox —Zkakx —I—mZakm =0
k=0 k=0 k=0
Z [(k + 1)(k + 2)agys — kag +mag] 2* =0
k=0
In the latter expression we must cancel

(k+1)(k + 2)agr2 = (kK —m)ay

" B kE—m
Tk +2)(k+1)

ag

From (2.7) we obtain the following values

m
=75 1%
1—m
B= g3 M
2—m —m (2 —m)
ag, = Ao = Qa,
N W 4x3x2x1 °
. _S—ma _(1—m)(3—m)a
T B4 P Budx3x2x1 ¢
~A4-m  —m(2-m)(4—m)
06 65 T T 6xbxdnda2nl 0
5-—m  (5-m)(3—-m)(l—m)
T 6 T T T6xbada3a2nl
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Finally, the general solution to the differential equation is given by

2— 2— 4 —
y:aoll_gIQ_wx‘l_m( Trg?( m)l’ﬁ—:|—|—
' ’ : (2.9)
1-— 1-— 3 — 1— 3 — 5—
o [ L5 o) (G om) 7]
3! 5! 7!
As may be observed a,,10 = Gyiq4 = @i = 0 and if we make k =m —2; m —4; m —6; ..., we

have
_—m(m-—-1)  (m
m—2 = 9 Am = 2 Qm

mim = Yom = B =3) 1X3(i;)am

Amp—q4 =

And so on, successively. If we make a,, = 1 and a,,_; = 0 we will have a particular integral called

the Hermite polynomaial, which is in the form:

, d" e‘é
Hep(x) =a™ — (7;) ™ 4 1><3(TZ) Tt = (—1)”@2M (2.10)
3 THE LEGENDRE EQUATION

This kind of differential equation is given in the form

(1—a2*)y" — 22y +n(n+ 1)y =0 (3.1)
or also

d N _

o [(1—9& )%] +nn+1)y=0 (3.2)

where n equals 0,1,2,3,...

We may find the solution through the serial expansion of
y = Z apz” (3.3)
k=0

321



CHAPTER 4 APPLICATIONS APPROACH

Differentiating we have

y = Z kapr ™! (3.4) Z k(k — 1)agr*? (3.5)
k=1 k=2

From there

2xy = Z 2kapz® = Z 2kayz”
k=1 k=0

[
[M]#

(1—x%)y” k(k — 1)aga™ Z k(k — 1)apz®
k=2

£
I
v

o0

(k +2)(k + Dagpoz® =Y " k(k — Daga® =
k=0

I
WK

>
I
o

[(k +2)(k + Dagyo — k(k — 1)ag] 2"

[
K

il
o

Substituting (3.3), (3.6) and (3.7) in (3.1) we obtain

D [k +2)(k + Dagga — k(k — Dag — 2kay, + n(n + Dag] 2* =0
k=0

That is, the following must be valid

(k+2)(k + Vags2 — k(k — 1)ag — 2kag +n(n+ 1)ax =0

or, the same,

(k +2)(k + 1)agra + [n(n+ 1) — 2k — k(k — 1)) az = 0

(k+2)(k+1Dage — (E—n)(k+1+n)ar=0

Clearing
(n—Fk)(k+14+n)

_ k>0
Th+2 k+2)(k+1) " =

Then, making £k =0,1,2,3,...
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_ n(n+1) _ _ (n=1)(n+2)
a2 = —=5 Qo a3 = =73

a1

ay = _n(n72)(1:1?L1)(n+3) ao a5 = —

(nfl)(n73é§n+2)(n+4)a1 (3.12)

ag = _n(n—2)(n—4)(723-!&-1)(71-&-3)(71-&-5) ag ar = —

(n=1)(n—=3)(n—=5)(n+2)(n+4) (n+6) a
7! 1

Substituting the values of (3.12) in (3.3) gives

P [1 _nl) g2 a2 n) a0 ) (k) g6 4 ] (3.13)
Y2 = a1 [x D) 5y (DB D) 5 (DS Dt 0) 7 ] (3.14)

If we put y; + yo we obtain the general solution to (3.1).
According to the previous rule, we have that the last two series converge for |z| < 1.

As we can observe in (3.13) and (3.14), if n = 0 or is an even positive integer, the expression in

(3.13) becomes a polynomial of n degree, P,(x) and the expression in (3.14), an infinite series

Qn ().

If instead n is an odd positive integer, the expression in (3.13) becomes an infinite series, whereas

the expression in (3.14) remains as a polynomial of n degree, P, (z).

This means that the general solution to Legendre will be given in the form y = agP,(z) + a1Q, ()

or y = apQn(x) + a1 Py(x) , given n =0,2,4,...or n =1,3,5,7,..., respectively.

In other words, the general solution to the Legendre equation contains a solution of polynomials

and an infinite solution.
The functions of the second type @, (z) are of relative importance in applied mathematics.

Therefore, from the expression in (3.11) we will try to find the polynomials for any value of n,

either zero, even or odd.
(n—Fk)(k+14n)
(k+2)(k+1)

Ap42 = — ag
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By making k =n—-2,n—4,...

n(n —1)
Up-o = ———ay
2(2n —1) (3.15)
" __(n—2)(n—3)a _n(n—l)(n—Z)(n—?))a
"ET O 4@2n—-3) "7 2d4@n—-1)(2n—3) "
Therefore,
nn—1) o, nn-1)nN-2)(n-3) , 4,
= " " TR 1
Y= T T oy Ty T Taen—nen—3) © (3.16)
If we substitute a,, in a way that y(1) = 1 for any value of n, then we have
1><3><5><7><...(2n— 1) (2n)'
¢ n! 2n(n!)? (8:17)
where
(2n)! nn—1) ., nnh—-1)n-2)(n-3) , 4,
P, = e e —— A R 3.1
@ =5z ¥ "=t T 2amn—Den—3) ° (3.18)

The expression in (3.18) is called the Legendre polynomial or function of the first type. From

this latter expression we have different polynomials for different values of n.

y Ry
1
Py(z) =1 | |
1 P |
Pi(z) =2 3 ~ A% |
‘ P 1
1 2 : / :uL
Py(z) = E(Bx -1) 1 4 ‘
(3.19) -l 1
1, . |
Py(z) = 5(5:55 — 3x) l
1 |
Pi(r) = £(35a" —30° +3) |4
1 5 Y —1
Ps(z) = §(63a: — 702° 4 15x)
Figure 4.1

If we substitute x = 1, each of the polynomials will be equal to one, as we can see in (3.19), since

we have established y(1) = 1.

These polynomials are represented in Figure 4.1.
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2
Ji(z) = \/%sinx

As we can see, if n # 0,1, 2,3, we have two independent solutions:

Then

y1 = Jy(z) and yo = J_,(x) for n > 0 fraction

The general solution to (6.1) is
y=AJy(x)+ BJ_,(x) (6.37)

Instead if n is a non negative integer, we have the particular integral .J,.

To obtain the general solution we must use the Bessel functions of the second type, which we will

not include in this study.

7 THE THOMSON FUNCTIONS OR THE BER—BEI FUNCTIONS

These functions are solutions to a special Bessel differential equation (of great importance in

electricity problems) given in the form
d

oot Yy =0 (7.1)
x

We had already obtained a Bessel differential equation of type

Py | dy

Its solution was

y = Jn(2) (7.3)

If we make z = ax in the expression in (7.2) we obtain

d*y dy
2 2,2 2
= 4
x 2+xx+(a:c n?)y =0 (7.4)
And its solution will be
y = Jy(ax) (7.5)
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Then, for n =0
o d? d
—Z+x—y+axy:0
Czi dz (7.6)
Ty dy
d 2—|—d——|—a:cy—0

where the general solution will be given by

y = Jo(ax) (7.7)
As we can see, the expression in (7.6) is equal to the solution in (7.1), where a® = —i; that is, the
solution to (7.1) is given in the form
y=Jo ((—i)tx) (7.8)
and since
(—i)? =2 (7.9)
(7.8) is reduced to
y=Jo (zgas) (7.10)

Then, substituting in the expression in (6.25) we have

3 2'31:2 i6$4 ing 2'12378 2151‘10
J ( ) —1- - =
A SERRETIOTE 26(3!)2 * 28(4!)2 EPLIGIE
B 1 N ix2 .’174 10 _
— it T wene T w A1)2 210 5!
(21) ( ) ( ( 2 (7.11)
{L‘4 ZES xlO
= |1- — ... - — ] =
[ 22 T ppes 1 l22 224262 T e }
( 1)k: 4k o :I:‘4k_2
L+ Z 22426282 . 2 22426282 . (4k — 2)?
Then, if we name
( 1)k 4k
ber( =1+ Z 22426282 . . (4@2
(7.12)
] o X .T4k_2
bei(@) = = > (-1 g (4k — 2)2
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we arrive at

Jo (z%x> = ber(x) + i bei(z) (7.13)
which is the solution to (7.1).

The graphs of these functions can be seen in Figure 4.3.

Figure 4.3

8 MODELING APPLICATIONS

Modeling is the process of reconstruction of a real system to a form called model, which may be

analyzed.

We will introduce the concept by using a simple example.
Ezxzample 8.1. We have a closed electrical circuit formed by a resistance of R ohms, an inductance

of L henries, a condenser of capacitance C' and an electromotive force E(t).
Let x be an input reading in volts and an output reading in amperes.

Let the differential equation be
To ydz (t)
0— +b—+cz=w
dt? dt
The changes produced by w(t) maintain the variation of z in time; w constitutes the input of the
equation and z, the output. If now a, b and ¢ are assigned values related to R, L and C' in a
convenient manner, so that the relation between w and z is identical to the one between x and v,

we say that the systems are isomorphic. In other words, we have modelized the real system.
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The corresponding equation is
d*i di i
L— —+—==F'(t
TR

which represents the mathematical model isomorphic to the electrical circuit.

The practical value of isomorphism is that we can predict how the real system is going to behave

under certain conditions.

It may occur that it is too difficult to expose the real system to a direct trial. That may be

because it is not easily accessible or it has not been built or is not yet available.

Summarizing, a mathematical model or isomorphism is a set of equations based on a description
of a real system and created with the purpose of predicting behavior related to the real behavior,

be it a system of science or engineering.
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Example 1.

a) Solve:

Py dy
(2 Wy = 1.1
gz b tv=0 (1.1)

such that y(t) =1, %' (t)=0 when t=0.

Solution: On first inspection we see this is a linear differential equation, where the
coefficients are non constant polynomials. Soon we associate the solving method to one of the
methodological approach: the Laplace Transform. We can also see that the exercise is a first
order Bessel equation and that we can take the applications approach.

In order to illustrate the general method, we will choose the first one.

Considering the properties of the operators for ¢ = 0 we have

LA{ty"}y = —dip [p*Y (p) — p|] = —p*Y'(p) — 2pY (p) + 1

dY (p)

LA{ty} = R ~Y'(p)

L{y'}=pY(p) —1

Then, the equation in (1.1) transformed is

—p*Y'(p) = 2pY (p) +1+pY(p) =1 -Y'(p) =0

(p* + 1)%}@ +pY(p) =0

Separating variables

dY(p) = pdp _
Y(ip)  p+1

1
InY(p) + 3 In(p? +1) =1Inc
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If K+ 1 =n we have

Im+1 = ; o= 1)(!1_1(17),1_‘_ T (g)m—&-%—l

ém—u&;m) (2 -

&) e+ S i (8 - e ()| -
) i S (e ) 6 -
) e S e () -

) 1 [ +§;(_1)nn!r(min+1) @)2”] =

2m

= (@)

Example 6. Find the solution to the following integral

£(0) Z/OOO Stz 6.1)

By trigonometric equality we may express (6.1) as
[ 1  cos(2tz)
t) = — — d
1) /0 [2,22 222 } ‘

Applying the Laplace Transform and inverting variables we obtain
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2p(p? + 422)22 o p(p?+422)
1 227 s
= Sarctan —| = ——
p Plo  2p
T
L)} =55 (6.2)
2p?
|
By property £ {t"} = :J‘rl, being n a positive integer and by applying £~ to (6.2) we have
p
s
t) = —t
f =1
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